- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Huang, Bing (3)
-
Baldick, Ross (1)
-
Borisevich, Albina (1)
-
Cao, Guixin (1)
-
Cardenas, Alvaro A (1)
-
Castro, Sebastián R (1)
-
Chien, Po‐Hsiu (1)
-
Ding, Xiang (1)
-
Gai, Zheng (1)
-
Goodenough, John B. (1)
-
Grundish, Nicholas S. (1)
-
Hu, Yan‐Yan (1)
-
Jang, Jae_Hyuch (1)
-
Koneru, Keerthi (1)
-
Krotofil, Marina (1)
-
Leng, Huaqian (1)
-
Li, Sean (1)
-
Li, Yutao (1)
-
Lozano, Juan (1)
-
Mishra, Rohan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ding, Xiang; Yang, Baishun; Leng, Huaqian; Jang, Jae_Hyuch; Zhao, Junrui; Zhang, Chao; Zhang, Sa; Cao, Guixin; Zhang, Ji; Mishra, Rohan; et al (, Advanced Functional Materials)Abstract Interface plays a critical role in determining the physical properties and device performance of heterostructures. Traditionally, lattice mismatch, resulting from the different lattice constants of the heterostructure, can induce epitaxial strain. Over past decades, strain engineering has been demonstrated as a useful strategy to manipulate the functionalities of the interface. However, mismatch of crystal symmetry at the interface is relatively less studied due to the difficulty of atomically structural characterization, particularly for the epitaxy of low symmetry correlated materials on the high symmetry substrates. Overlooking those phenomena restrict the understanding of the intrinsic properties of the as‐ determined heterostructure, resulting in some long‐standing debates including the origin of magnetic and ferroelectric dead layers. Here, perovskite LaCoO3‐SrTiO3superlattice (SL) is used as a model system to show that the crystal symmetry effect can be isolated by the existing interface strain. Combining the state‐of‐art diffraction and electron microscopy, it is found that the symmetry mismatch of LaCoO3‐SrTiO3SL can be tuned by manipulating the SrTiO3layer thickness to artificially control the magnetic properties. The work suggests that crystal symmetry mismatch can also be designed and engineered to act as an effective strategy to generate functional properties of perovskite oxides.more » « less
-
Zhou, Qiongyu; Xu, Biyi; Chien, Po‐Hsiu; Li, Yutao; Huang, Bing; Wu, Nan; Xu, Henghui; Grundish, Nicholas S.; Hu, Yan‐Yan; Goodenough, John B. (, Small Methods)Abstract A thin solid electrolyte with a high Li+conductivity is used to separate the metallic lithium anode and the cathode in an all‐solid‐state Li‐metal battery. However, most solid Li‐ion electrolytes have a small electrochemical stability window, large interfacial resistance, and cannot block lithium‐dendrite growth when lithium is plated on charging of the cell. Mg2+stabilizes a rhombohedral NASICON‐structured solid electrolyte of the formula Li1.2Mg0.1Zr1.9(PO4)3(LMZP). This solid electrolyte has Li‐ion conductivity two orders of magnitude higher at 25 °C than that of the triclinic LiZr2(PO4)3.7Li and6Li NMR confirm the Li‐ions in two different crystallographic sites of the NASICON framework with 85% of the Li‐ions having a relatively higher mobility than the other 15%. The anode–electrolyte interface is further investigated with symmetric Li/LMZP/Li cell testing, while the cathode–electrolyte interface is explored with an all‐solid‐state Li/LMZP/LiFePO4cell. The enhanced performance of these cells enabled by the Li1.2Mg0.1Zr1.9(PO4)3solid electrolyte is stable upon repeated charge/discharge cycling.more » « less
An official website of the United States government
